
Limiting Data Exposure in Monitoring
Multi-domain Policy Conformance

Mirko Montanari, Jun Ho Huh,

Rakesh B. Bobba, Roy H. Campbell

University of Illinois at Urbana-Champaign

TRUST 2013
June 17, 2013, London, UK

Multi-Organization Systems

Cloud Computing

Cloud providers
Cloud users

Airport infrastructure

Airlines
Airport management

Maintenance contractor
2

2012: 44 million compromised records*

2005-2008 (US): estimate 227 million records**

Security Information and Event Management
Systems (SIEM)
 85+ products on the market in 2012

Gather, analyze, and present security relevant
information collected from devices,
applications, and users

Tradeoff: Confidentiality vs Detection

3

Events provide knowledge about:

• network topology

• network traffic

• configurations

• installed programs

• vulnerable programs

• user behaviors

• services

• critical machines

• …

Complete confidentiality Complete openness

Detection of global
security concerns

Only detection of local
security concerns

Can we find a tradeoff?

Monitoring Architecture

Service
Provider

Cloud
Provider

Cloud
Provider Private

Infrastructure

Multi-organization event-based monitoring

• Built on top of current monitoring
architecture

• Each organization detect problems in its
infrastructure independently

Monitoring
server

Monitoring
server

4

Contributions:

• Minimum information sharing / need-
to-know in multi-organization systems

• Distributed logic reasoning algorithm
for policy compliance

• Minimal sharing obtainable for simple
policies; reduces information
exposure for more complex policies

Policy-based Approaches

[…] nearly every case that we have seen thus far has attributes of
its breach that could have been prevented if the control
requirements had been properly implemented. […]

96% of victims subject to PCI-DSS had not achieved compliance [Verizon

Data Breach Investigation Report 2012]

“1.3) Prohibit direct public access between the Internet and any system
component in the cardholder data environment.”

“6.1) Ensure that all system components and software are protected from
known vulnerabilities by having the latest vendor-supplied security patches
installed. Install critical security patches within one month of release.”

5

Examples of Application Domain

Maintenance contractors  airline

e.g., Maintenance crew and device must be located on
airport tarmac when accessing external access point of
aircraft

Cloud user  Cloud provider

e.g., critical services should not run on a physical server
which is sending malicious traffic from one of its virtual
machines

6

Challenges

Discrete Events

• e.g., configuration changes, failures, audit logs

• Hard to summarize

• Current anonymization techniques focus on numeric data

Distributed architecture

• Cannot rely on a single entity to process information

• Confidentiality of records; liability reasons

• Multiple monitoring systems interacting without a single point of
aggregation

7

State-based Representation: Datalog

runsCriticalService(inst1, apache),

instanceAssigned(inst1, ps1), badTraffic(ps1)

 violationA(inst1, apache)

Correlation process is logic reasoning
I: VM instance

P: program

S: physical server

badTraffic(ps1)

Malicious traffic

detected from ps1

runsCriticalService(inst1, apache)

VM instance inst1 is running

a critical service “apache”

instanceAssigned(inst1, ps1)

VM instance1 is assigned

to physical server ps1

Monitoring Rule: A violation is detected if a critical service is running on a physical

host which is sending malicious traffic

runsCriticalService(I, P),

instanceAssigned(I, S), badTraffic(S).

 violationA(I, P)

8

Event Aggregation

Monitoring

Server

• vulnerable

programs

• user behaviors

• services

• critical machines

• …

instanceAssigned

(inst1, ps1)
badTraffic(ps1)

• network topology

• network traffic

• configurations

• installed programs

runsCriticalService

(inst1, apache),

Event correlation: process of analyzing events for detecting complex conditions

Cloud User Cloud Provider

Need-to-know set: information needed for inferring the presence of a violation

Observation: If no violation, no need to share actual
events

9

Minimal Sharing Example

instanceAssigned(inst1,

_)

badTraffic(_)

Cloud
Provider violationA(inst1, apache)

runsCriticalService

(inst1, apache),

Cloud
User

instanceAssigned

(inst1, ps1)
badTraffic(ps1)

Local
Infrastructure

state

Local Infrastructure state

external for cloud users

10

violationA(I, P) ← runsCriticalService(I, P), instanceAssigned(I, S), badTraffic(S).

I: VM instance

P: program

S: physical server

Locality: classifying events into local and remote

Minimal Sharing Example (II)

instanceAssigned(inst1,

_)

badTraffic(_)

Cloud
Provider

Cloud
User

instanceAssigned

(inst1, ps1)
badTraffic(ps1)

violationA(I, P) ← runsCriticalService(I, P), instanceAssigned(I, S), badTraffic(S).

Local
Infrastructure

state

Local Infrastructure state

external for cloud users

11

I: VM instance

P: program

S: physical server

Conditional Sharing: events shared only if match found on the other side

Resource-based Overview

Resource: unique names for entities in the system. e.g., hosts, users, programs

Private B

Cloud
Provider

instance2
instance3

instance0
instance3
ps1

Private A
instance0
instance1

violation(inst0, p) ← instAssigned(inst0, ps1), badTraffic(ps1).

Resource-data completeness

If a monitoring server receives all events regarding a particular resource r, rules
which body include all events containing r can be processed locally

12

violation (inst0, p)  runsCritService (inst0, p), instAssigned(inst0, ps1), badTraffic(ps1) .

violation(inst0, p) 
runsCritService (inst0, p),

partial(inst0).

partial(inst0) 

instAssigned (inst0, ps1),

badTraffic(ps1)

Intuition: Resource-based Rewrite

Complex policies rewritten to correlate events about a single resource at each step

13

Distributed Correlation

badTraffic(ps1)

violation(I, P) 

 runsCritService (I, P), partial(I).

partial(I) 

 instAssigned(I, S), badTraffic(S)

instAssigned

(inst0, ps1),

ps1,ps2

inst0,inst1,inst2

runsCritService
(inst0, p)

partial(inst0)

14

violation(I, P) 

 runsCritService (I, P), partial(I).

partial(I) 

 instAssigned(I, S), badTraffic(S)

inst3,inst4

Process locally, send to the next
monitoring system

Distributed Correlation

badTraffic(ps2)

violation(I, P) 

 runsCritService (I, P), partial(I).

partial(I) 

 instAssigned(I, S), badTraffic(S)

instAssigned

(inst4, ps2),

ps1,ps2

inst0,inst1,inst2

runsCritService
(inst4, p)

partial(inst4)

15

violation(I, P) 

 runsCritService (I, P), partial(I).

partial(I) 

 instAssigned(I, S), badTraffic(S)

inst3,inst4

Distributed Correlation

ps1,ps2

inst0,inst1,inst2

16

inst3,inst4

r1,r2

ps1, inst4

r1, inst2, inst3

ps1,ps2

Servers interact only if managing
resources involved in a violation

Local detection of all-local violations

Resource-based Processing- Naming

17

Multiple monitoring servers within each domain

• Distributing load / information across multiple servers

DNS-based naming system to specify managed resources

ps1,ps2

inst0,inst1,inst2

inst3,inst4

r1,r2

DNS
H(r1).mon.orgB.com

orgB
orgA

Event Correlation Trees

I

S

runCritService(I,P)
P

instAssigned(I, S)

badTraffic(S)

violation(I, P)  runCritService(I, P), instAssigned(I, S), badTraffic(S) .

instAssigned(I, S)

S

runCritService(I,P)

badTraffic(S)

I

partial(I) 

instAssigned(I, S)

badTraffic(S)

violation (I,P)

 runCritService(I, P),

 partial(I).

18

I: VM instance

P: program

S: physical server

Problem: Unilateral Sharing

badTraffic(ps1) instAssigned

(inst0, ps1),

partial(I) 

 instAssigned(I, S), badTraffic(S)

violation(I, P) 
 runsCritService (I, P), partial(I).

Org B Org A

partial(inst0)

When a rule is satisfied on a monitoring server, the resulting event is shared
unilaterely, without checking if it is relevant to a violation

Conditional Sharing

An event is shared only if there is a matching event on the remote server

19

Secure Two-Party Computation

Conditional Sharing

r=sharing if events a,b match the policy

• Event a known only by org A

• Event b known only by org B

Determine if the two events match without revealing them to
the other party

20

Garbled Circuits [Yao, 1986; Huang, 2012]
• Fast secure two-party computation

1. Encode each resource-based rule as a

combinatorial circuit
2. Event parameters as input from each organization
3. If result is true, the event is shared

• If not, almost no information is leaked
4. Repeat for each couple of private events

runsCritService
(inst0, p) partial(inst0)

0/1

Event-based Representation
Alternative (more powerful) representation of policies and events

- Temporal conditions (e.g., before, precedes, overlaps)

violation(I, P) ← runsCritService (I, P), partial(I,S)

partial(I,S) ← instanceAssigned(I, S), badTraffic(S).

violation(I, P) ←

E1 type runsCriticalService

E1 instance I

E1 program P

partial(I, S); E1 during E2

partial(I, P) ←

E2 type instanceAssigned

E2 instance I

E2 server S

E3 type badTraffic

E3 server S; E3 during E2

21

critical operation overlaps a component failure

malicious traffic detected during execution of
vulnerable software

Condition Description

precedes x+ < y−

meets x+ == y−

overlaps x− <y− <x+,x+ <y+

during x− >y−,x+ <y+

starts x− ==y−,x+ <y+

finishes x+ ==y+,x− >y−

Creating the Circuit

Create a circuit for each resource-based rule

The circuit encodes the conditions in the rule

Condition Description

equality E1.s == E2.s

less-than E1.s < E2.s

precedes x+ < y−

meets x+ == y−

overlaps x− <y− <x+,x+ <y+

during x− >y−,x+ <y+

starts x− ==y−,x+ <y+

finishes x+ ==y+,x− >y−

E2(ps2, ts2, te2) E3(ps3, ts3, te3)

partial(I, P) ←

E2 type instanceAssigned

E2 instance I

E2 server S

E3 type badTraffic

E3 server S

E3 during E2

Equality
(XOR)

ps2 ps3

> <

ts3 ts2 te3 te2

22

Multi-event Matching Protocol

violation(I, P) ← runsCriticalService (I, P), partial(I,S)

OrgB
Event

List

partial(inst0,s1)

…

runsCriticalService (instn, p2)

runsCriticalService (inst1, p1)

runsCriticalService (inst0, p1)

partial(inst0, s1), runsCriticalService (instn, p1)
…
partial(inst0, s1), runsCriticalService (inst1, p1)
partial(inst0, s1), runsCriticalService (inst0, p1)

…

no match

no match

match found

Information is shared only if there is a match of the policy
For two-event policies, this is the minimal need-to-know

parallel
computation

23

Distributed Algorithm: Rewrite

Private B
inst2
inst3

Private A
inst0
inst1

partial(I,S) ← instanceAssigned(I, S), badTraffic(S).

violation(I, P) ← runsCriticalService (I, P), partial(I,S)

Naming

violation(I, P) 

runsCritService (I, P),

instAssigned(I, S)

badTraffic(S)

Cloud
Provider

inst0
inst3
ps1

24

Distributed Algorithm: Naming Resolution

partial(I,S) ← instanceAssigned(I, S), badTraffic(S).

Private B

Cloud
Provider

inst2
inst3

inst0
inst3
ps1

Private A
inst0
inst1 partial(inst0)

Naming

H(inst0)?

runsCriticalService (inst0, p1),

25

violation(I, P) ← runsCriticalService (I, P), partial(I,S)

violation(I, P) 

runsCritService (I, P),

instAssigned(I, S)

badTraffic(S)

Distributed Algorithm

Private B

Cloud
Provider

inst2
inst3

inst0
inst3
ps1

Private A
inst0
inst1

Naming
runsCriticalService (inst0, p1),

partial(inst0)

26

partial(inst0)

(A)

partial(I,S) ← instanceAssigned(I, S), badTraffic(S).

violation(I, P) ← runsCriticalService (I, P), partial(I,S)

violation(I, P) 

runsCritService (I, P),

instAssigned(I, S)

badTraffic(S)

Evaluation

Quantitative measures: Shared events; Event throughput

Qualitative evaluation of other information leaks

Experimental Setup

• Evaluated on a system running on 2-20 servers

• Parameters of event datasets generated to analyze specific behaviors of
the system

– Evaluation not specific to a single application domain

• Garbled circuit implementation from Huang, Evans, Katz (NDSS 2012)

– Improvements for parallel computation

27

Event Shared

Complex policies

• Approach optimal for 2 event policies, more complex policies require
sharing intermediate data

0

0,1

0,2

0,3

0,4

0,5

0,6

0,25 0,35 0,45 0,55 0,65 0,75 0,85 0,95

Sh
ar

e
d

 m
sg

s
/

to
ta

l m
sg

s

% matching

clear txt, 2 event rule min, 2 event rule encr, 2 event rule

min, 4 event rule encr, 4 event rule

28

Resource Distribution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

se
n

t
m

sg
s

 /
 t

o
ta

l m
sg

s

distribution

clear txt, 2 event encr, 2 event rule min, 4 event rule encr, 4 event rule

Fraction of resources allocated to a monitoring server. 2 servers 29

Information Leaks

Naming system

• Requests for resolution reveals that an organization has control of a
resource

– Short hash of resources reduces the information leaked

– Potential of conflicts hides information about specific resources

Requests

• The presence of a request might imply the presence of a local sequence of
events matching the policy

– Add random requests

Number of events

• Repeating the process multiple times reveals the number of matching
events

– Add unmatchable events to hide the real event count

30

Performance Evaluation of GC

Performance: Delay in the processing of an event as a function of the level of
concurrency in the server

• Executed within and across geographical regions (us-east, us-west)

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450 500

ra
te

 [
ev

e
n

ts
 /

 s
e

c]

parallel matchings

AFTER us-east

DURING us-east

AFTER us-east <-> us-west

DURING us-east <-> us-west

31

Conclusions

Contributions

• Distributed reasoning algorithm for detecting violations when information
is spread across multiple organizations

• Application of secure two-party computation to event correlation to reduce
information sharing to minimum need-to-know for simple policies

• Evaluated the approach in multiple conditions

– Significant reduction of information sharing; acceptable performance for
configuration monitoring

32

• Policy-based approaches are applied widely in industry

• Goal: Extend approaches to multi-organization systems

Future Work

• Optimize policy-rewrite to reduce sharing in complex policies

• Allow multiple level of confidentiality in information, and reduce sharing of
critical data

