
A Framework for Evaluating Mobile App
Repackaging Detection Algorithms

Heqing Huang, PhD Candidate.

Sencun Zhu, Peng Liu (Presenter) & Dinghao Wu, PhDs

Repackaging Process

Downloaded
APK file

Unpack

Third Party Jar &
Native Libs (optional)

Signed with
Repackager’s
 Private Key

Dalvik Bytecode
(classes.dex)

Compressed
Resources

Disassembler
Dissembled class files

(.smali classes) Manipulation
(add malicious
code) &
obfuscation

Dalvik Bytecode
Modified (classes.dex)

Repack

Repackaged
APK file for

resubmission

Assembler

• Android apps repackaging (plagiarism) problem

▫ 5-13% of apps in third party app markets are plagiarism of
applications from the official Android market

▫ 1 in 10 apps are repackaged apps!

▫ And 86.0% of malware were repackaged (1083/1260)

• Repackaging Detection Algorithms (RDAs) do exist

▫ With very ad hoc evaluation on their false negatives

▫ Potential advanced code obfuscations could appear in the
market at any time

Motivation

• RDAs need false negatives evaluation

▫ What code obfuscation methods can produce
more false negatives?

• Help tune the RDAs against various code
obfuscations

▫ How to choose a specific k for the k-gram based
feature used in the Feature Hashing mapping?

Evaluation Framework

Original Android App Developing Process

Java &
C\C++(optional)

Source Code

Java bytecode

AndroidManifest.xml &
resource files

Third Party Jar &
Native Libs (optional)

javac

aapt

dx

APKbuilder

Layout class
(R.java)

aapt
&aidl

Packed APK file
for submission

Compressed
Resource (App.ap_) Dalvik Bytecode

(classes.dex)

Signed with developer’s Private Key

lib.so files
through JNI

Native lib.so files

• Dalvik Bytecode easy to be reverse
engineered
▫ RE tools for automation: Basmali/Smali, Apktool and

Dare, etc.

▫ Dalvik Virtual Machine: register-based bytecode easy
to read

Why repackaging so attractive?

Why repackaging so attractive?

• Reverse engineering is easy

• Repackaging is easy

– Easy to insert malicious code

– Easy to do obfuscations

• Marketing is easy

– Self-signed Certificates without authorization

– Little vetting on submitted apps from Google Side

– Decentralized Markets of Android Apps

Why repackaging so attractive?

• RDAs
▫ Fuzzy Hashing based RDA (CODASPA’ 12)

▫ Program Dependence Graph based RDA (ESORICS’ 12)

▫ Feature Hashing based RDA (DIMVA’ 12)

▫ AndroGuard (Blackhat’ 11)

• False Negatives of RDAs?
▫ Specific code manipulation to blur the used

by these detectors

▫ Potential advanced obfuscations

• False Positives
– Requires manual check; not a goal of our evaluation
framework

Current Repackaging Detection Algorithms (RDA)

• Fuzzy Hashing

▫ A hash is computed for each segment of opcode

▫ Identify lazy repackaging efficiently

• False Negatives

– Adding noisy code chunks

– Use different ad libraries

Current Repackaging Detection Algorithms (RDA)

Potential Obfuscation

Potential Obfuscation

• PDG: Program Dependence Graph

▫ Identify repackaged apps with similar data dependency
graph of a set of methods

• False Negatives

▫ Resilient against dummy code insertion

▫ Advanced control and data dependency obfuscators

Current Repackaging Detection Algorithms (RDA)

Potential Obfuscation

Potential Obfuscation

Before Obfuscation

invoke-static {v1}

move-result-object v1

var v1

invoke-interface {v0, v1, v2}

var v1

const-string v2,

var v2

After Obfuscation

invoke-static {v1}

move-result-object v1

var v1

move-object v3, v1

var v1

invoke-interface {v0, v3, v4}

var v3

move-object v1, v3

var v3

const-string v2,

move v4, v2

var v2

var v4

move v2, v4

var v4

• Feature Hashing

▫ Identify repackaged apps with similar features

▫ Feature is defined as k-grams of various opcode sequence patterns
within each program’s basic block

• False Negatives

▫ Modify the normal opcode sequence patterns by code injection

▫ Reduce k to defend against code injection but may raise false
positives

Current Repackaging Detection Algorithms (RDA)

• Provide a standard evaluation for RDAs

• RDAs based on static program analysis

• Dalvik Bytecode as the original inputs

• Evaluation should be efficient and effective

• Contain a good set of obfuscation algorithms to
analyze the effective of the RDAs

• Can provide standard evaluation schemes

• Broadness and depth analysis metrics

Evaluation Framework Requirements

Our Evaluation Framework

 Dalvik
 Bytecode
Preprocessor

Obfuscated
DEX Files

 Intermediary
Representation (IR)
code

Similarity
Score
without
obfuscation

Obfuscated
 IR code

 IR2DEX
 Repackager

 Repackaging
Detection tool

 Dalvik EXecutable
Original App (one)

 IR code
 Obfuscator

Similarity
Score after
obfuscation
attack

≥

• Dalvik Bytecode Preprocessor
▫ Convert Dalvik Bytecode into Java Bytecode
▫ Optimize corresponding Java Bytecode by Soot
▫ Preprocess and verify the Java Bytecode by Byte Code

Engineering Library

• IR code Obfuscator
▫ Leverage obfuscators from SandMark
▫ Obfuscate programs for broadness and depth analysis

• IR2DEX Repackager
▫ Use DX tool from Android Platform to compile the

obfuscated Java Bytecode down to Dalvik EXcutable

Our Evaluation Framework

• Broadness Analysis

▫ Perform obfuscations in a controlled manner (one
obfuscator per evaluation)

▫ To identify the strength and pinpoint the weakness

• Depth Analysis
▫ Perform advanced obfuscations by serializing several

obfuscators for each evaluation

▫ To further analysis the obfuscation resilience of the
detection algorithm

Our Evaluation Framework

• Single obfuscator

▫ Perform obfuscations in a controlled manner (one
obfuscator per evaluation)

▫ 36/39 single obfuscators from SandMarks

Framework Success Rates

Framework Success Rates

Successfully output
20*36 = 720, 3 array

based obfuscators
cannot complete

Array relevant opcode
requires non-ambiguous
opcode types during the

conversion from DVM
bytecode to JVM bytecode

aget-wide from Dalvik
VM can be potentially
mapped to iaload and

faload from JVM

By “success”, we mean whether an evaluation workflow crashes.

• Multiple obfuscators
▫ Conflicts might appear among obfuscators

▫ Tested various combination of obfuscators from the most
effective single obfuscators

Framework Success Rates

AndroGuard (The only open sourced RDA)

• Use regular expression to describe apps’ control flow
structure into string

• Use Normalized Compression Distances to compare
the string pairs of corresponding method pairs

• Similarity score is derived from method relevant
metrics to “new method”, “diff method” and “match
method”

Case Study on AndroGuard

Broadness analysis on AndroGuard

It is a Layerout obfuscation
Perform the conversion of

JVM bytecode <-> Dalvik VM
bytecode by our framework

with no obfuscation

Control flow structure
obfuscation performed on

method granularity are more
efficient to destruct the

method relevant metric used
by AndroGuard

Will it be better if AndroGuard
calculate similarity metric on

basic block granularity? Or add
Data dependency similarity

comparison metrics?

Depth analysis on AndroGuard

All the serialized
obfuscations further bring

the similarity score to a low
level

The top-3 control flow
structure obfuscations is

much more power than the
top-3 data flow obfuscations

Combining one data flow
obfuscation with the other

top-2 control flow
obfuscations could further
reduce the similarity score

• Support only static analysis based RDAs

▫ Try to enhance the framework for dynamic analysis
based RDAs

• Not all the obfuscators can be completed
successfully

▫ Leverage other obfuscation tools

▫ Try to fix the type inference and other bugs from the
current Dalvik bytecode preprocessor

Limitations and Future work

• Security research requires benchmarks

• A framework to check the potential FNs of
RDAs

• Propose Broadness and Depth evaluations to
pinpoint the weakness of the RDAs

• Help tune the RDAs’ design and configuration

Conclusion

Thank You!

