Trust Domains: An Algebraic, Logical, and Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

University of Aberdeen, Scotland, U.K. {g.a.anderson, matthew.collinson, d.j.pym}@abdn.ac.uk

18th June, 2013

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

ntroduction

Trust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling

Processes and Semantic: Logic Trust Domains

Trust in Multi-Agent Modelling

What is trusted/trustworthy?

- A part of a system that an agent chooses to interact with, in order to achieve its goals.
- A context that enables desired behaviour.

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

Introduction

Trust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling

Processes and Semantic Logic Trust Domains

Trust in Multi-Agent Modelling

What is trusted/trustworthy?

- A part of a system that an agent chooses to interact with, in order to achieve its goals.
- A context that enables desired behaviour.

Definition

- A logical assertion that expresses the properties that must be possessed by any trusted agent.
- A cost bound that limits the extent to which the system around the agent can be trusted.

That is, the agent will trust only those parts of the system where a desired property can be reached or observed within a given cost expenditure. Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

Introduction

Trust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling

Processes and Semantics Logic Trust Domains

Domains of Trust

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

Introduction Trust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling

Processes and Semantic Logic Trust Domains

We consider three examples of trust domains

- Contract choices.
- Boundary establishment.
- Information provenance.

These examples are illustrative rather than comprehensive.

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

Introduction

Trust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling

Processes and Semantics Logic Trust Domains

- 1. Contract choices: risk management trade-offs in a corporate environment
- 2. Boundary establishment: interaction between different agents with different preferences.
- 3. Information provenance: determining which resources to rely upon

Contract Choices

- Mergers and acquisitions (M&A) deal team: values companies under consideration.
- Outsources specialised valuations (e.g. real estate).
- Trade offs: cost of valuation vs efficacy of valuation vs risk of data loss.

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

Introduction

Trust in Multi-Agent Modelling Domains of Trust

Frust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling

Processes and Semantics Logic Trust Domains

Contract Choices

- Supplier A (specialised):
 - Fee cost: 0.6.
 - Valuation utility: 0.5.
 - Data risk loss cost: 0.5.
- Supplier B (generalised):
 - Fee cost: 0.7.
 - Valuation utility: 0.3.
 - Data risk loss cost: 0.1.
- The overall costs are 0.5 for Supplier A and 0.3 for Supplier B.

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

Introduction

Trust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance

Formal Modelling

Processes and Semantics Logic Trust Domains

Boundary Establishment

- When entering port control is transferred from the ship's captain to a port tug.
- Consider a series of locations, *L*₁ and *L*₂.
- The captain would prefer for control to be transferred as soon as possible (insurance reasons):
 - Will take ship as far as L₂ in calm seas, but only to L₁ in rough seas.
- The harbourmaster would prefer for control to be transferred as late as possible, in order to improve throughput.
 - Preferences are dependent on what the captain is willing to do.

Gabrielle Anderson, Matthew Collinson, David Pym

ntroduction

Trust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling

Processes and Semantics Logic Trust Domains

- Trust Domains: An Algebraic, Logical, & Utility-theoretic
- 2013-06-13 Approach
 - Trust Examples
 - Boundary Establishment
 - Boundary Establishment

- Boundary Establishment · When entering port control is transferred from the ship's captain to a port tug. Consider a series of locations, L₁ and L₂. The captain would prefer for control to be transferred as soon as possible (insurance reasons): Will take ship as far as L₂ in calm seas, but only to L₁ in rough seas. . The harbourmaster would prefer for control to be transferred as late as possible, in order to improve hroughput.
 - · Preferences are dependent on what the captain is willing to do.

- 1. L_1 is closest to open sea and L_2 is closest to port
- less time spent per ship if they don't have to be tugged as far
- 3. Relate the boundary choirs to security. Different agents making decisions about what they want to do; looking at how implementing agents can interact.

Boundary Establishment

• Captain *C*, at each location, can either choose to go forward or to wait for a tug.

C's costs	Calm Seas	Rough Seas
Forward	0.3	0.7
Wait	0.7	0.3

• Harbourmaster *H*, at each location, can either choose to supply a tug or wait for the ship to come closer.

H's costs	C prefers forward	C prefers wait
Tug	0.5	0.5
Wait	0.3	0.7

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

Introduction

Trust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling Processes and Semantics Logic Trust Domains

Information Provenance

- When making decisions about data sharing arrangements, the quantity and the quality of the evidence provided is important.
- Smaller quantities of evidence can be mitigated by social or technical mechanisms (e.g. ISO certification or hardened OS's).
- Consider a scenario with two contractors; the first, *A* can leak information in two ways and the second, *D*, can leak it in one way.

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

Introduction

rust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling Processes and Semantics Logic Trust Domains

- Trust Domains: An Algebraic, Logical, & Utility-theoretic
- 2013-06-13 Approach
 - Trust Examples
 - Information Provenance
 - Information Provenance

- Information Provenance
 - · When making decisions about data sharing arrangements, the quantity and the quality of the evidence provided is important.
 - · Smaller quantities of evidence can be mitigated by social or technical mechanisms (e.g. ISO certification or hardened OS's).
 - · Consider a scenario with two contractors; the first, A can leak information in two ways and the second. D. can leak it in one way.

1. makes use of processes that can (but don't necessarily) leak

Information Provenance

- Contractors can show that they use mechanisms that preclude the leaks:
 - Resource *e_i* denotes evidence that the i'th leak type is precluded.
- The contracting company can't differentiate between the contractors, but can be shown the evidence.
- If it both pieces of evidence the same any one, it will not be able to accurately determine the contractor that has a higher chance of data loss.

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

ntroduction

Trust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

-Ormal Modelling Processes and Semantics Logic Trust Domains

- Trust Domains: An Algebraic, Logical, & Utility-theoretic
- 2013-06-13 Approach
 - Trust Examples
 - Information Provenance
 - -Information Provenance

Information Provenance · Contractors can show that they use mechanisms that preclude the leaks: · Resource e, denotes evidence that the i'th leak type is precluded. The contracting company can't differentiate between the contractors, but can be shown the evidence. · If it both pieces of evidence the same any one, it will not be able to accurately determine the contractor that has a higher chance of data loss.

1. i.e. doesn't know that one can fail in multiple ways

Process Models

$$\mathsf{E} ::= \mathbf{1} \mid [] \mid \mathbf{a} : \mathsf{E} \mid \sum_{i \in I} \mathsf{E}_i \mid \mathsf{E} \times \mathsf{E}.$$

- Choices take account of agents *around* the agent making the choice.
- Treat contexts as first class objects processes contain hole tokens [].
- Split the semantics in two: cost based and action based.
- We establish the normal bisimulation relation (for resource calculi).

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

Introduction

Trust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling

Processes and Semantics Logic Trust Domains

Action Semantics

$$\overline{R, a: E \xrightarrow[C_1]{C_2}^a \mu(a, R), E}$$

$$\frac{R, E \xrightarrow{C_2}^{a} R', E' \qquad S, F \xrightarrow{C_2}^{b} S', F'}{R \circ S, E \times F \xrightarrow{C_2}^{ab} R' \circ S', E' \times F'}$$

where $C_3 = C_1((S, F(C_2)) \times [])$ and $C_4 = C_1((R, E(C_2)) \times [])$.

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

Introduction

Trust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling

Processes and Semantics Logic Trust Domains

Cost Semantics

$$\frac{n = u(C_1(R, E_i(C_2)))}{R, \sum_{l} E_l \xrightarrow{C_2} R, E_i}$$

$$\frac{R, E \xrightarrow{C_2}^{o} R, E' \quad S, F \xrightarrow{C_2}^{p} S, F'}{R \circ S, E \times F \xrightarrow{C_2}^{o+p} R \circ S, E' \times F'}$$

where $C_3 = C_1((S, F(C_2)) \times [])$ and $C_4 = C_1((R, E(C_2)) \times [])$.

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

Introduction

Trust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling

Processes and Semantics Logic Trust Domains

Logic Language and Interpretation

$$\phi ::= p \mid \perp \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \rightarrow \phi \mid \langle \mathbf{a} \rangle \phi \mid [\mathbf{a}] \phi \mid$$
$$I \mid \phi \ast \phi \mid \phi \twoheadrightarrow \phi \mid \langle \leq \mathbf{n} \rangle \phi \mid [\leq \mathbf{n}] \phi \mid \langle > \mathbf{n} \rangle \phi \mid [> \mathbf{n}] \phi$$

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

ntroduction

Trust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling

Processes and Semantics Logic

Logic Language and Interpretation $\phi := -\mathbf{p} | \perp | \top | \neg \phi | \phi \land \phi | \phi \lor \phi | \phi \rightarrow \phi | (\mathbf{a}) \phi | [\mathbf{a}] \phi |$ $I | \phi \circ \phi | \phi \rightarrow \phi | (\leq n) \phi | [\leq n] \phi | (> n) \phi | [> n] \phi$

We can establish the customary forward direction of the Hennessy Milner property (the other direction is precluded by the resource and multiplicative logic approach).

Logic Language and Interpretation

$$\phi ::= \boldsymbol{p} \mid \bot \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \to \phi \mid \langle \boldsymbol{a} \rangle \phi \mid [\boldsymbol{a}] \phi \mid$$

 $I \mid \phi * \phi \mid \phi \twoheadrightarrow \phi \mid \langle \leq \mathbf{n} \rangle \phi \mid [\leq \mathbf{n}] \phi \mid \langle > \mathbf{n} \rangle \phi \mid [> \mathbf{n}] \phi$

$$C_1 \models_{C_2} \langle \leq n \rangle \phi$$
 iff there are C'_1, C'_2, m, o such that
 $C_1 \stackrel{e,1}{\longrightarrow} C'_1$ and $C_2 \stackrel{C_1}{\longrightarrow} C'_2$,
and $m \leq n$ and $C'_1 \models_{C'_2} \phi$.

 $\begin{array}{ll} C_1 \models_{C_2} [\leq n] \phi & \text{ iff } \quad \text{for all } C'_1, C'_2, m, o \text{ such that,} \\ & \text{ if } C_1 \stackrel{e, \mathbf{1}}{\underset{C_2}{\longrightarrow}} C'_1 \text{ and } C_2 \stackrel{C_1}{\underset{C_0}{\longrightarrow}} {}^o C'_2 \\ & \text{ and } m \leq n, \text{ then } C'_1 \models_{C'_0} \phi. \end{array}$

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

ntroduction

Frust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling

Logic Trust Domains

 $\begin{array}{l} \text{Logic Language and Interpretation} \\ \hline \\ \phi := & \rho \mid \perp \top \mid \neg \mid \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \land \phi \mid |\phi \phi \mid |\phi \phi \mid \\ & I \mid \phi \circ \phi \mid \phi \rightarrow \phi \mid \subset \phi \land \phi \mid | S \land \phi \mid | S \land \phi \mid | S \land \phi \mid \\ & G \mid \vdash_G (\subseteq \phi \mid \phi \mid H \text{ there are } Q, G, \phi \cap \phi \mid S \land \phi \mid \\ & G \mid = G (\subseteq \phi \mid \phi \mid H \text{ there are } Q, G \rightarrow \phi \mid \\ & g \land \phi = G (= g \land \phi \mid H) \text{ and } g \land \phi \mid \\ & g \land \phi = G (= g \land \phi \mid H) \text{ and } g \land \phi \mid \\ & g \land \phi \in G (= g \land \phi \mid H) \text{ and } g \land \phi \mid \\ & f \land \phi \in G (= g \land \phi \mid H) \text{ and } g \land \phi \mid \\ & f \land \phi \in G (= g \land \phi \mid H) \text{ and } g \land \phi \mid \\ & g \land \phi = G (= g \land \phi \mid H) \text{ and } g \land \phi \mid \\ & g \land \phi = G (= g \land \phi \mid H) \text{ and } g \land \phi \mid \\ & g \land \phi \in G (= g \land \phi \mid H) \text{ and } g \land \phi \mid \\ & g \land & g \land \phi \mid \\ & g \land & g \land \\ & g \land g \land g \land g \land g \mid$

We can establish the customary forward direction of the Hennessy Milner property (the other direction is precluded by the resource and multiplicative logic approach).

Trust Domains: Definition

 $TD((R, E), \phi, \psi, n) = \{S, F \mid S, F \vDash_{C_{\emptyset}} \phi \text{ and } R \circ S, E \times F \vDash_{C_{\emptyset}} \langle \leq n \rangle \psi \},\$

- Definition consists of:
 - An agent R, E.
 - A context S, F.
 - A precondition on the context φ.
 - A cost bound n.
 - A desired logical property ψ

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

Introduction

rust in Multi-Agent Modelling Jomains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling

Processes and Semantics Logic Trust Domains

Trust Domains: Definition

 $TD((R, E), \phi, \psi, n) = \{S, F \mid S, F \vDash_{C_{\emptyset}} \phi \text{ and } R \circ S, E \times F \vDash_{C_{\emptyset}} \langle \leq n \rangle \psi \},\$

- Definition consists of:
 - An agent R, E.
 - A context S, F.
 - A precondition on the context φ.
 - A cost bound n.
 - A desired logical property ψ
- This effectively collates the contexts that make the logical property φ → (≤ n) ψ hold.

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

Introduction

rust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling Processes and Semantics

Logic Trust Domains

Contributions and Conclusions

- We define an operational semantics and logic for cost and context based transition systems.
- We and establish the expected properties.
- Formally incorporating cost into choice permits us to model interesting risk management scenarios with complex trade-offs.
- A context is considered to be trusted (part of a *trust domain*) if it enables some desire behaviour, within a given cost expenditure.

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

Introduction

Trust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling Processes and Semantics Logic Trust Domains

- Cost determinations require knowledge about the world around a given agent — has game theoretic possibilities.
- Probabilistic modelling would permit us to consider expected rather than absolute costs.
- The cost function can probably be related to the structure of resources and processes in interesting ways — has information flow possibilities.

Trust Domains: An Algebraic, Logical, & Utility-theoretic Approach

Gabrielle Anderson, Matthew Collinson, David Pym

Introduction

Trust in Multi-Agent Modelling Domains of Trust

Trust Examples

Contract Choices Boundary Establishment Information Provenance Information Provenance

Formal Modelling

Processes and Semantics Logic Trust Domains