

KISS: "Key it Simple and Secure" Corporate Key Management

Zongwei Zhou, Jun Han, Yue-Hsun Lin,
Adrian Perrig, Virgil Gligor
ECE Department and CyLab,
Carnegie Mellon University

June 2013

Motivation

 Deployment of cryptographic systems and protocols (e.g., HTTPS) has grown rapidly

Motivation

- Key management is a fundamental building block of all cryptosystems
- Even experts fall prey to inadequate key management mechanisms
 - DigiNotar CA: keys are misused to issue certificates which enabled HTTPS man-in-themiddle attacks
 - Stuxnet: rogue device drivers were digitally signed by keys stolen from two high-tech companies

Challenges

- Fine-grained Key-Usage Control
 - Does an application executed by a user have permission to access a certain key?
- Secure System Administration
 - Communication between administrators and the Key Management System (KMS) must be authenticated
 - Stealing authentication credentials ?
 - Insider attacks?

Existing Solutions

- Hardware Security Module (HSMs)
 - Limited control of key usage

Existing Solutions

- Hardware Security Module (HSMs)
 - Limited control of key usage
 - Large TCB for system administration

Existing Solutions

Software-only Solutions

- Deployment of KMS software on commodity servers
- Large TCB
 - Key protection, usage control and administration all rely on untrustworthy operating system services (e.g., process isolation, file system permissions)

System Goals

- Small and Simple TCB dedicated to KSM
- Cost-effective
- Secure System Bootstrap
- Secure System Administration
- Fine-grained Key Usage Control

Attacker Model

 Malware and Malicious Administrators attempt to leak, compromise, or misuse cryptographic keys.

System Design

Micro-Hypervisor Architecture

Unified for server, client and manager

Distinct Features

- Secure System Bootstrap
- Secure System Administration
- Fine-grained Key Usage Control

System Bootstrap

Server bootstrap

Public Key

Private

Key

Extended Remote **Attestation Protocol**

Extended Remote Attestation

- TPM Quote includes KISS hypervisor, server software, server public key, TAD public key list
- Each TAD verifies:
 - Its own key is in the received TAD public key list
 - Length of the key list = # of TADs
- Minimum administrator effort
 - Checks that all TADs display success messages
- Security Analysis (e.g., Sybil attacks)

System Administration

• e.g., remote verification of server output

(3) TAD verifies Sig(OUTPUT) using server public key, and display Hash(OUTPUT)

- (4) **Admin** uses TAD to remotely attest to KISS manager software and hyprevisor
- (5) Admin confirms that two Hash(OUTPUT) match

System Administration

- Small and Simple TAD
 - Software: attestation, msg auth and bootstrap
 - Hardware: buttons, display ...
 - Usability: hash comparison
 - Used for local/remote and input/output

Key Usage Control

(2) KISS app is protected and verified by Hypervisor

- (1) **User** selects the KISS application to execute
- (4) **User** remotely attests to the Client Software and Hypervisor

UserV

(5) **User** authenticates to Client software

Key Usage Control

- UserV helps defend against subtle attacks
 - e.g., stealing authentication credentials, or sensitive user input
- UserV is much simpler than TAD
 - Only performs remote attestation
 - Does not store any secrets

Conclusion

- A key management system architecture leveraging trusted computing techniques on commodity computers
- **Small TCB:** Micro-hypervisor-based design and lightweight administrator devices.
- Secure system bootstrap and administration, fine-grained key usage control
 - Defend against malware and insider attacks

Thanks!

zongweiz@andrew.cmu.edu